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Figure 1. Given challenging indoor depth scans (top row) of humans interacting with their surroundings and with each other, our method
is capable of segmenting humans (bottom row) realistically and accurately. We train and evaluate on scenes with a single real human,
multiple synthetic humans, and multiple real humans.

Abstract

Segmenting humans in 3D indoor scenes is becoming in-
creasingly important with the rise of human-centered ar-
tificial intelligence that tries to perceive human-scene in-
teractions or social interactions between multiple humans.
However, current methods for 3D semantic segmentation
mostly focus on objects. This is largely due to the nature
of existing 3D indoor datasets since they contain hardly
any annotated humans. Moreover, other datasets that fo-
cus on human-object interactions exhibit limited diversity
in terms of human poses and occlusion patterns which lim-
its generalization to unseen scenes. In this work, we pro-
pose a pipeline to augment 3D indoor datasets with syn-
thetically generated humans, as well as real human scans,
which results in datasets that cover a large variety of hu-
man poses and scene interactions. We also devise a method
for segmenting humans in depth scans rendered from the
populated 3D scenes and provide an in-depth study of the

generalization performance of our models across differ-
ent scene settings. Furthermore, we show that it is key
to jointly train on real and synthetic data and report a
significant improvement over models trained on a single
modality. Our code is available for research purposes at
https://github.com/aycatakmaz/segment-humans-3d.

1. Introduction
Semantic segmentation of 3D scenes has seen tremen-

dous progress over the last years [9, 13, 16, 19, 24–26, 28,
33,37,38,40]. While current methods for 3D indoor scenes
achieve strong performance across many settings, they are
largely limited to segmenting scene objects, such as furni-
ture and windows. On the other hand, the ability to segment
humans in 3D scenes is becoming increasingly important
as the need for human-centered datasets emerges and 3D
scanners become more available. Providing a method that
accurately segments humans in 3D scenes can be beneficial
for many applications, such as augmented reality interac-
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tions, generation of 3D human-scene interaction datasets,
and motion capture in complex scenes. However, this fun-
damental topic has been rather under-explored through the
lens of existing 3D semantic segmentation approaches.

We argue that one of the limiting factors in learning to
segment humans in 3D scenes is the limited availability of
annotated 3D datasets that include humans interacting with
the scenes and with each other. While most autonomous
driving datasets for 3D semantic segmentation [2, 4, 29, 36]
include humans, these outdoor scenarios often have a lim-
ited variety in human poses and actions, such as standing or
walking. We are particularly interested in general human-
scene interaction scenarios capturing a broader variety of
human poses and actions, which often take place in indoor
settings. However, existing large-scale indoor datasets with
segmentation annotations, such as Matterport3D [5] and
ScanNet [10], either completely lack humans or only have
a few human instances. Although a few steps towards more
diverse interaction datasets have recently been taken with
BEHAVE [3] and EgoBody [41], none of them has been
used for learning to segment humans thus far.

In this work, we explore the task of segmenting humans
in partial point clouds obtained from depth scans of scenes
in which humans are interacting with their surroundings and
with each other. We focus on indoor settings where we can
potentially have one or more humans engaging in activi-
ties that involve scene objects. As we argue that one of
the main limitations for this task is the limited availabil-
ity of indoor scenes with annotated humans, we first focus
on populating 3D indoor scenes with synthetic and real hu-
mans. We augment the ScanNet [10] dataset with synthetic
humans using PLACE [42] and with real human scans from
BEHAVE [3]. We then render frames from the populated
3D scenes to simulate a depth camera. We train our mod-
els on partial point clouds obtained from these depth scans,
as well as scenes from BEHAVE [3]. We also jointly train
our models on real and synthetic data and show that they
outperform the models trained on either real or synthetic
data alone. We perform experiments to cross-examine the
generalization capability of our models trained on different
sets of training data by testing them on scenes from other
datasets with varying scene settings. As shown in Figure 1,
our models trained with scenes including a single real hu-
man, multiple synthetic humans and multiple real humans
are capable of segmenting humans realistically and accu-
rately. Our contributions are as follows:

1. We focus on the very important yet largely ignored task
of segmenting humans in depth scans of complex, clut-
tered scenes and propose a method for this task that is
trained on synthetic, real, and joint data.

2. We propose a pipeline to augment 3D indoor datasets
with synthetically generated humans, as well as real

human scans, interacting with their surroundings and
render depth frames from the populated 3D scenes to
simulate a depth camera.

3. We conduct an extensive set of experiments that pro-
vide insights about the generalization performance of
our model across different settings and show that the
model jointly trained on synthetic and real data out-
performs the models trained on a single modality.

2. Related Work
2.1. Segmenting 3D Scenes

The goal of 3D semantic segmentation is to assign a se-
mantic label to each point in a given 3D scene. Before
the emergence of deep learning based methods, the classi-
cal methods formulate this problem as a graphical model
and combine it with a classifier stage [12, 20, 21]. With
the increased availability of annotated 3D datasets and the
tremendous advancements in the performance of deep neu-
ral networks, numerous methods have been proposed for the
task of 3D semantic segmentation. These methods can be
divided into two groups: voxel-based methods [9,13,16,25,
37] and point-based methods [11, 22, 23, 31, 32, 34].

Voxel-based methods consist of two main operations:
transforming unstructured 3D point clouds into regular vol-
umetric grids (voxels) and applying 3D convolutions to per-
form semantic segmentation. The initial work relies on us-
ing fully convolutional neural networks (FCNNs) [25]. In
[16], Huang et al. proposed to use 3D-FCNN for the classi-
fier stage in order to perform voxel-level semantic labeling.
This work was extended in [37] by feeding the coarse voxel-
level semantic labels to a trilinear interpolation layer and
applying a 3D fully connected CRF to obtain fine-grained
semantic segmentation.

More recent voxel-based methods rely on sparse con-
volutional networks [9, 13]. In [13], Graham et al. pro-
posed submanifold sparse convolutional networks (SSCNs)
for processing sparse 3D point clouds and performing se-
mantic segmentation. SSCNs are shown to outperform the
state-of-the-art approaches both in segmenting objects in
large 3D scenes and in segmenting parts of objects in small
3D scenes. In [9], Choy et al. proposed the Minkowski En-
gine which is an auto-differentiation library for sparse ten-
sors. As it supports a wide range of neural network layers,
it is used as a building block in many applications, such
as segmentation and classification. Following many recent
indoor segmentation methods, we rely on the Minkowski
Engine as our model backbone.

Point-based methods operate directly on 3D point clouds
without imposing structure which improves computation
time and reduces artifacts caused by voxelization. These
methods became popular with PointNet [31] which uses a
max-pooling layer to extract global features and fuses them
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with point features obtained through a sequence of MLPs
before assigning semantic labels to objects. However, this
network does not capture local features which are crucial
for semantic segmentation. In [32], Qi et al. applied Point-
Net [31] hierarchically on nested groupings of input points
to learn local features. There are also other deep learning-
based frameworks [11, 22, 23, 34] that improve the perfor-
mance of existing point-based methods.

2.2. Populating 3D scenes with realistic humans

Although the explained methods achieve state-of-the-art
results in segmenting objects in 3D scenes, none of them
focuses on segmenting humans in indoor scenes. This may
be due to the limited availability of 3D indoor datasets with
humans. For this reason, methods for populating 3D scenes
with realistic humans interacting with the environment have
recently emerged. In PLACE [42], Zhang et al. proposed to
train a conditional VAE to learn plausible proximal relation-
ships between a human body and a 3D scene, generate a full
3D body mesh that comply with the predicted human-scene
proximity, and refine the body mesh through optimization.
This method does not use semantics, but it encodes prox-
imal relations and the scene shape with Basis Point Sets
(BPS) to synthesize naturalistic 3D human bodies, repre-
sented by the SMPL-X model [30]. In POSA [15], Hassan
et al. proposed to extend the SMPL-X model [30] to encode
the contact probability with the surface and the correspond-
ing semantic label for every mesh vertex. This method uses
the scene mesh and the extended SMPL-X body mesh [30]
to place realistic humans in 3D scenes using the semantics.

2.3. Segmenting humans in depth scans

Considering that it is not always practical to acquire full
scans of scenes in real world environments, various meth-
ods have been proposed for detecting humans using depth
images [8, 39] and segmenting humans or human parts in
depth scans [17, 18, 39]. In [8], Choi et al. proposed an
algorithm to detect humans in indoor settings using depth
images obtained from an RGB-D camera. This algorithm
uses a graph-based segmentation method to segment depth
images, applies parameterized heuristics to obtain a set of
candidates, and computes a depth-based descriptor for each
candidate to detect humans. In [39], Xia et al. proposed
a model-based human detection method using depth im-
ages obtained from a Kinect camera and a segmentation
method to separate the detected humans from the back-
ground. These methods are shown to detect and extract the
contours of humans accurately on real 3D Kinect sequences.

In [18], Jalal et al. proposed an approach to segment and
track human actions using depth images obtained from a
Kinect camera. This approach extracts the human silhou-
ettes from the background on the depth images and applies
two other mechanisms to track actions. In [17], Hynes et

al. proposed to segment human parts from depth images us-
ing a graph-based approach which uses the image positions
of each part as a prior. Although segmenting humans from
depth scans is not a new task, it is largely ignored compared
to segmenting 3D scenes. Moreover, the current methods
mostly consider uncluttered environments containing a sin-
gle human which is not occluded. Hence, we focus on seg-
menting humans in depth scans of complex environments in
which multiple humans are interacting with each other and
with their surroundings and are potentially occluded.

2.4. Available 3D datasets

Existing 3D datasets significantly differ in terms of their
modalities, as well as their targeted tasks. There are datasets
of 3D objects, such as PartNet [27] and ShapeNet [6]. There
are also several datasets of 3D scenes with semantic seg-
mentation annotations, such as ScanNet [10] Matterport3D
[5], and Replica [35]. However, these datasets either com-
pletely lack humans or only have a few human instances.

PROX-E [14, 43] is a 3D indoor scene dataset with se-
mantic scene annotations in which humans, represented by
the SMPL-X [30] model, interact with their surroundings.
However, this is a small-scale dataset which does not pro-
vide sufficient data to train a segmentation model that can
handle a large number of interaction scenarios. The recently
released BEHAVE dataset [3] provides multi-view RGB-D
frames containing humans interacting with objects, but it
has not been used for 3D semantic segmentation tasks yet.

There are also several autonomous driving datasets con-
taining humans, such as [2,4,29,36]. However, they are not
suitable for our task for a variety of reasons. Firstly, out-
door scenes differ from indoor scenes in terms of the objects
present in the scene and their arrangements. Secondly, hu-
mans are underrepresented compared to other classes, such
as roads and cars. Finally, human poses and their interac-
tions with objects are less varied in outdoor scenes.

3. Method
In this work, we firstly target the limited availability of

datasets containing humans interacting with each other and
with their surroundings. This section provides an overview
of our approach for existing datasets, such as BEHAVE [3],
as well as the methods we propose to obtain depth scans of
3D scenes populated with synthetic and real humans.

3.1. Datasets

BEHAVE [3]. The BEHAVE dataset [3] is a large-scale
dataset of human-object interactions captured in natural en-
vironments. It provides 3D human, object, and contact an-
notations. The interactions between the subjects and objects
are captured using 4 Kinect RGB-D cameras. Each frame
contains human and object masks together with segmented
point clouds. We obtain partial point clouds using the depth

3



Figure 2. Given a scene mesh from ScanNet [10], we populate it with synthetic humans using PLACE [42]. From the resulting scene
with humans, we obtain two sets of training data: firstly, we combine it with the label mesh to obtain full point clouds and secondly, we
render it to acquire depth and label maps which are then backprojected to obtain partial point clouds. For placing real humans, we find
the clear floor vertices, i.e. floor vertices that do not have any objects on or near them, of the given scene and place BEHAVE [3] humans
on vertices sampled from them. The rest of the data generation process is the same as explained for scenes with synthetic humans.

images provided in the dataset and pre-process each point
cloud to create a point cloud segmentation dataset for train-
ing. Since the point clouds are very dense (∼ 800k points
per scene), we sample 20% of points for each scene. We
use the originally provided train-validation-test split and ob-
tain ∼41k point clouds as training samples, ∼5k validation
samples, and∼18k test samples in total from all frames cap-
tured from each Kinect camera.

Although BEHAVE [3] is the largest dataset to this date
to provide 3D annotations for human-object interactions,
it suffers from multiple limitations. Firstly, the dataset is
limited to only 8 subjects and 20 objects. Moreover, the
human and object masks registered from multi-views are
rather noisy and sometimes inaccurately reconstructed, es-
pecially in the presence of interaction objects with which
humans are in close contact (e.g. backpacks). Furthermore,
each frame contains a single human, always at a minimum
certain distance, captured from a Kinect camera located at
one of the edges of the room. For more realistic captur-
ing scenarios, e.g. with a hand-held mobile camera with a
depth sensor, this dataset is potentially not representative,
and a model trained with the BEHAVE dataset might not
generalize well. In the following subsections, we address
this problem and explain how we populate scenes and cap-
ture depth maps of more realistic scenarios, which can have
a more practical value in potentially complex indoor scenes.

ScanNet [10] populated with synthetic humans.
The ScanNet dataset [10] is a dataset of RGB-D scans of
real-world environments. It provides 2.5 million RGB-D
images acquired in 1513 scenes and 707 rooms and anno-

tated with semantic segmentations, surface reconstructions,
and 3D camera poses. However, it only contains a few hu-
man instances. In the light of our previous discussion about
our aim to obtain more realistic human-scene interaction
scenarios, we augment the ScanNet dataset [10] by plac-
ing synthetic humans in realistic poses using PLACE [42].
To achieve this, we first calculate the signed distance field
(SDF) and find the scene boundaries for all training scenes.
The SDF value is 0 on the surfaces or boundaries of a set, so
PLACE [42] uses the scene SDFs and the scene boundaries
to find suitable surfaces to place synthetic humans.

Since we want to capture a variety of human poses and
actions, we modify PLACE [42] to perform instance seg-
mentation guided human location sampling. For this pur-
pose, we extract the coordinates and labels of all objects
in all training scenes and use this information for generat-
ing bounding boxes of 2m3 to place humans. The size for
the bounding boxes is selected as the same size used in the
training of PLACE [42]. We generate a maximum number
of 10 synthetic humans per scene where the maximum num-
ber depends on the number of objects present in the scene.
During generation, we give priority to some objects, such as
tables and chairs, to capture different human poses and then
randomly choose among other objects if these do not ex-
ist in the scene or the maximum number of people has not
been reached yet. We also use 200 and 100 iterations for
simple and advanced optimization of PLACE [42], respec-
tively. Moreover, we increase the weight of the collision
loss term (from 8.0 to 10.0) in advanced optimization to re-
duce interpenetrations, but there are still some failure cases

4



around thin structures, e.g. tables and chairs. We save opti-
mized body meshes along with optimized body parameters
and vertices for each scene.

We then select a random number of humans nhuman ∈
{0, 1, . . . , Nmax} for each scene and save their indices. The
pre-processing of the scenes includes combining the low
resolution scene meshes and the low resolution scene labels
to produce 3D point clouds where each point is annotated
with GT semantic category. During data-loading, we load
nhuman selected humans and append their point clouds to
the scene point cloud if nhuman is not zero.

ScanNet [10] populated with real humans. In this
approach, we augment the ScanNet dataset [10] with real
human scans provided in the BEHAVE dataset [3]. For
this purpose, we extract clear floor vertices from all train-
ing scenes by using the low resolution scene labels and save
them. We set a safety threshold distance of 0.5 meters and
filter all floor vertices such that if there is a vertex within the
safety threshold distance that is not floor in the xy-plane,
that floor vertex is not clear. This eliminates the floor ver-
tices at the edges of the scene and the floor vertices that have
some objects on or near them. This also ensures that there
is sufficient space for the human to be placed.

We then select a random number of humans nhuman ∈
{0, 1, . . . , 10} from BEHAVE [3] for each scene. During
data-loading, we load the scene and nhuman selected hu-
mans for that scene. For each scene, we randomly sam-
ple nhuman clear floor vertices and apply transformations
to place the humans to the selected locations. Since each
loaded human point cloud is upside down, we first trans-
form it to be upright and then translate it to the desired ver-
tex location. We also find the smallest z coordinate of each
human point cloud and translate it such that the humans are
always placed on the floor. We then append the human point
clouds to the scene point cloud if nhuman is not zero.

Rendering RGB-D scans from full scans. As humans
are dynamic in nature and it is not practical to acquire full
scans of scenes with humans during real testing environ-
ment, we focus on depth scans for our pipeline. With this in
mind, we aim to simulate real testing environments in order
for our work to have a higher practical value. In that di-
rection, we render RGB-D images from full scene meshes
with synthetic humans acquired by PLACE [42] and with
real humans from BEHAVE [3]. We use label meshes of
ScanNet [10] and place synthetic or real humans in them
as explained before. An artificial camera is then placed at
the center of each scene with a height uniformly sampled
between [1.40, 1.60] meters. The camera is always aligned
with the ground (i.e. xy-plane), but it looks at a random di-
rection sampled between [0, 360) degrees. For each scene,
30 RGB-D images are rendered with camera’s height and
direction resampled at each iteration.

Throughout the paper, we refer to the RGB-D dataset ob-

tained from ScanNet [10] scenes populated via PLACE [42]
as ScanNet + PLACE and to the RGB-D dataset obtained
from ScanNet [10] scenes populated with real human scans
from BEHAVE [3] as ScanNet + BEHAVE. Both ScanNet
+ PLACE and ScanNet + BEHAVE datasets include ∼45k
frames each and are provided with ground truth semantic la-
bel maps featuring the same set of semantic categories from
ScanNet [10]. Please note that we only use the depth maps
and the respective semantic label maps in our experiments.

Kinect RGB-D interaction sequences. To assess how
our model performs on real world data captured in more re-
alistic and complex settings, we use several Kinect RGB-D
sequences from the EgoBody [41] dataset. There are 4 dif-
ferent recordings that capture interactions between two sub-
jects in an indoor environment. Each recording is captured
from a main Kinect camera as well as 4 other Kinect cam-
eras, i.e. for each interaction recording, there are 5 RGB-D
sequences in total. In order to extract pseudo-ground truth
segmentation annotations, each frame is passed through a
pre-trained Mask-RCNN model [1] and the predictions are
post-processed to obtain binary masks for human bodies in
each RGB image followed by a morphological opening op-
eration on the masks. Please note that the pseudo-ground
truth can be noisy, hence the point cloud annotations are
noisy in some frames. By back-projecting the depth im-
ages, we obtain a point cloud for each scene, annotated with
pseudo-ground truth binary labels: human or background.

4. Experiments
In this section, we first provide details about our model

architecture as well as the training procedure. We then ex-
plain different experiment settings we considered, and re-
port the performance of each model. We additionally per-
form experiments to cross-examine the generalization capa-
bility of our models trained on different sets of training data
by testing them on scenes from other datasets with differ-
ent scene settings. Through our analysis, we demonstrate
that our models trained with a single real human, multiple
synthetic humans and multiple real humans are capable of
segmenting humans realistically and accurately, given that
input point clouds meet appropriate scene priors.

4.1. Network and training details
For our backbone architecture, we employ a U-Net vari-

ant of the Minkowski Engine [9], Res16UNet34A. We train
with a stochastic gradient descent optimizer with momen-
tum 0.9 and dampening factor 0.1. We employ weight de-
cay with a decaying coefficient of 10−4. Scheduling of the
learning rate is done via poly learning rate policy [7] (for
details, see supplementary material). We limit the maxi-
mum number of points to 1.2M, and sub-sample points be-
fore voxelizing the scene when necessary. We train with
elastic distortion augmentation as well as odd/even coordi-
nate augmentation to make the model more robust.
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Figure 3. Example predictions and comparisons. From left to right, we show: (1) input point cloud, (2) ground truth segmentation, result
from (3) model trained with the BEHAVE dataset, (4) model trained with depth scans from ScanNet scenes populated with PLACE, (5)
model trained with depth scans from scenes populated with BEHAVE, using two labels person and background. Each box denotes results
on a different dataset: BEHAVE, Kinect RGB-D Sequences, ScanNet+PLACE and ScanNet+BEHAVE. We demonstrate successful
results on challenging scenes with one or more humans, often occluded and closely interacting with their surroundings. Bottom two rows
demonstrate failure cases for different methods: first one is a close-up view of a human. While models trained with ScanNet+PLACE and
ScanNet+BEHAVE perform well on this point cloud, the model trained with BEHAVE fails, whose training only involves humans with
fully visible bodies. Last row demonstrates a scene with very noisy human bodies, which is challenging for our models to handle.
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Dataset Scene Voxel Size Model
BEHAVE depth scan 2 cm Res16UNet34A
ScanNet + PLACE full scan 2 cm Res16UNet34A
ScanNet + PLACE depth scan 2 cm Res16UNet34A
ScanNet + BEHAVE full scan 2 cm Res16UNet34A
ScanNet + BEHAVE depth scan 2 cm Res16UNet34A

Table 1. MinkowskiNet [9] architectures and training settings. We
provide architectural details about the networks as well as input
configurations for training the pipeline for different datasets. We
use standard MinkowskiNet architectures with Res16UNet34A
backbones that are available in the official Minkowski repository.

Unlike recent 3D full scan/RGB-D approaches for se-
mantic segmentation, our input features do not include RGB
color features. Instead, we use a constant feature value of 1
for each voxel. The main reason behind this is that we use
several methods to populate our scenes with realistic hu-
mans whereas these methods either do not provide realistic
textures for the humans or they do not consider constraints,
such as environment lighting, to assign realistic RGB val-
ues for each point. Therefore, we opted out from using the
RGB data and decided to solely rely on the scene geometry.

For our experiments using the BEHAVE dataset, we uti-
lize weighted cross-entropy in order to account for the class
imbalance in the dataset. For all other experiments, we use
cross-entropy as our training objective. Our pipeline takes
voxelized scans of 3D scenes and assigns a semantic class
to each voxel. Predictions for points are obtained via label
propagation based on the closest voxel center.

4.2. Evaluation

Evaluation metrics. We evaluate the performance
of our model by employing commonly used evaluation
metrics for 3D semantic segmentation, following previ-
ous works. In our quantitative evaluations, we report the
mean intersection-over-union (mIoU), mean average preci-
sion (mAP) and mean class accuracy (mAcc).

4.3. Experiments

We train our semantic segmentation models with real
scenes from BEHAVE [3], synthetic scenes from ScanNet
[10] populated with humans, as well as the combination of
these two datasets in a joint training setting. In all of our
experiments we use a voxel size of 2 cm.

Training with the BEHAVE dataset. We train our
model with partial point clouds obtained using the depth
maps from the BEHAVE dataset [3]. As the BEHAVE
dataset provides dense annotations in the image level for
humans, interaction objects and background, there are dif-
ferent potential strategies to formulate the problem. In our
experiments, we map all classes outside of the human class
to background category and train a semantic segmentation
model with two classes: human or background.

Training with ScanNet scenes populated with hu-
mans. For our experiments with the ScanNet dataset, we

Training data Input Voxel Size mIoU ↑ mAP ↑ mAcc ↑
BEHAVE depth 2 cm 94.1 99.2 97.6
ScanNet + PLACE depth 2 cm 66.5 91.0 71.8
ScanNet + BEHAVE depth 2 cm 66.5 92.5 71.8

Table 2. Results on the test split of the BEHAVE dataset [3]. We
obtain the best performance using the model trained with BE-
HAVE. In the ScanNet renders, humans are often closer to the
camera and their bodies are visible only partially unlike BEHAVE
scenes. We observe that models trained with ScanNet renders per-
forms worse than BEHAVE models on BEHAVE scenes, due to
different scene priors.

follow two approaches to populate the scenes with realistic
humans interacting with their surroundings, as outlined in
Section 3.1. In the first approach, we use PLACE [42] to
populate the scenes using synthetic humans. In the other
approach, we use human point clouds provided in the BE-
HAVE dataset. For both of these approaches, we define the
set of labels depending on the training input type. For our
model trained with full scans of scenes populated with hu-
mans, we train with 20+1 labels, where we add the per-
son category to the original 20 categories commonly used
in the literature for training semantic segmentation models
on the ScanNet dataset [10]. For our model trained with
depth scans obtained via rendering (see 3.1), we train with
binary labels, namely human and background. One of the
main reasons for this design choice is our empirical obser-
vation that using a small number of renders (∼30) from each
scene does not capture the variety of semantic categories in
the dataset, which in turn results in poor performance. In-
stead, for the case with depth scans, we focus our efforts
on segmenting humans from the background. As explained
earlier, we are particularly interested in the scenario with
depth scans due to its practical significance.

ScanNet + PLACE
Training data Input Voxel Size mIoU ↑ mAP ↑ mAcc ↑
BEHAVE depth 2 cm 57.8 86.5 66.0
ScanNet + PLACE depth 2 cm 93.1 97.9 95.6
ScanNet + BEHAVE depth 2 cm 87.6 97.4 90.4
ScanNet + BEHAVE
Training data Input Voxel Size mIoU ↑ mAP ↑ mAcc ↑
BEHAVE depth 2 cm 55.2 88.3 61.1
ScanNet + PLACE depth 2 cm 57.4 91.8 61.3
ScanNet + BEHAVE depth 2 cm 53.0 92.4 56.9

Table 3. Results on the depth scans from ScanNet [10] scenes pop-
ulated using PLACE [42] as well as populated with humans from
the BEHAVE [3] dataset. In most metrics and test scenarios, the
model trained with ScanNet+PLACE renders performs the best.

Evaluation on Kinect RGB-D interaction sequences.
In addition to our experiments with the BEHAVE and Scan-
Net datasets, we also assess how our model performs on real
world data captured in more realistic and complex settings.
For this purpose, we utilize the Kinect RGB-D interaction
sequences previously described in Section 3.1 in order to
evaluate how well our model generalizes to unseen, realis-
tic scenarios in which multiple humans are closely interact-
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ing with each other as well as their surroundings. While we
report quantitative results from our model using the pseudo-
ground truth labels in Table 4, we also assess the model per-
formance qualitatively in Figure 3. We evaluate on the mod-
els trained on real scenes from BEHAVE, synthetic scenes
populated with humans, and with the combination of these
two modalities. In Table 4, we refer to the model that was
trained with real scenes and synthetic scenes as joint.

Training data Input Voxel Size mIoU ↑ mAP ↑ mAcc ↑
BEHAVE depth 2 cm 78.1 82.7 83.8
ScanNet + PLACE depth 2 cm 70.0 84.9 76.7
ScanNet + BEHAVE depth 2 cm 63.6 81.4 68.7
Joint depth 2 cm 82.9 89.6 88.9

Table 4. Results on the EgoBody [41] Kinect RGB-D sequences.
Model jointly trained on real and synthetic scenes performs the
best on the Kinect sequences. Among the other models trained
with only one modality, training on the BEHAVE dataset performs
better compared to training with synthetic scenes. This is poten-
tially due to the fact that the Kinect sequences are of similar nature
as the BEHAVE scenes in terms of the positioning of humans with
respect to the camera.

Analysis of results. As shown in Table 2, we observe
that the model trained on BEHAVE performs the best when
tested on the BEHAVE test set. General scene settings in
the BEHAVE dataset are different than the renders from the
populated ScanNet scenes in terms of the number of humans
present, as well as the positions of humans with respect to
the camera. In the ScanNet renders, humans are often closer
to the camera and their bodies are visible only partially un-
like BEHAVE scenes. We observe that models trained with
ScanNet renders performs worse than BEHAVE models on
BEHAVE scenes, due to different scene priors.

In Table 3, it can be seen that the model trained with ren-
ders from ScanNet+PLACE results in superior performance
on most metrics, both on the ScanNet+PLACE test set as
well as the ScanNet+BEHAVE test set. An important thing
to note that the ScanNet+PLACE dataset is a dataset with
synthetically created clean annotations whereas the human
point clouds in the BEHAVE dataset are registered from 4
Kinect views and are quite noisy. Therefore, we suspect
that one of the main reasons why the model trained using
the renders from scenes populated with BEHAVE humans
underperform on almost all experiments, including the eval-
uations on ScanNet+BEHAVE renders, is the noise during
the training process. This finding highlights that even when
we are placing more realistic humans compared to SMPL
models, unclean labels hinder the training process.

Finally, in Table 4, it can be seen that the model trained
with the BEHAVE dataset has superior performance com-
pared to the models trained with renders from the populated
3D scenes. We suspect that one reason for this is the sim-
ilarity between the scene settings in the BEHAVE dataset
and the Kinect sequences, both of which were captured us-

ing Kinect cameras placed at one of the edges of the room
and from a certain distance from the subjects. This find-
ing highlights the importance of selecting a suitable model
based on the human-camera positioning prior. Furthermore,
we have trained another model where we used samples from
BEHAVE dataset as well as samples from ScanNet+PLACE
simultaneously during training, which is the joint training
setting. As shown in Table 4, our model trained jointly
on real and synthetic scenes has significantly better perfor-
mance compared to the models which were trained on only
real or only synthetically populated scenes. Our findings
show that it is key to jointly train on real and synthetic data.

5. Discussion
5.1. Limitations and future work

An important future direction is to explore the placement
of realistic humans with clothes. Another aspect is that
we currently only utilize the depth data and we do not use
RGB colors as features. This enables us to place textureless
SMPL body models in our scenes, which makes it easier to
increase the scale of the variety in body shapes and poses.
In later work, we will focus on the generation of more real-
istic synthetic data, ideally placing clothed humans instead
of directly using the SMPL model.

5.2. Conclusion
In this work we focus on segmenting humans interact-

ing with indoor scenes. We identify that one of the limiting
factors in this field is the limited availability of large-scale,
annotated 3D datasets with humans. To address this, we uti-
lize methods to populate 3D scenes from ScanNet [10] with
synthetic humans as well as scans of real humans, and we
collect a new semantic segmentation dataset of 3D scenes in
which humans are closely interacting with their surround-
ings. By capturing depth maps from the populated Scan-
Net scenes, we perform extensive quantitative and qualita-
tive evaluations that demonstrate the benefits of training a
semantic segmentation model on 3D scenes that were pop-
ulated with realistic humans. Furthermore, we analyze the
generalization capability of our models trained with scenes
with different human-camera priors when evaluated on dif-
ferent sets of data. Through our evaluations on real scenes,
we demonstrate that the key is to jointly train on real and
synthetic data instead of only using synthetic data.

6. Contributions of team members
Cafer and İrem were primarily responsible for placing

synthetic and real humans in ScanNet scenes, as well as
capturing depth scans from the scenes populated with hu-
mans to synthetically create a human segmentation dataset.
Ayça was primarily responsible for implementing the train-
ing pipeline with the MinkowskiEngine and evaluating the
human segmentation performance. Workload for all other
tasks was distributed equally among the team members.
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