
Institute of Neuroinformatics

Cafer Mertcan Akcay

Reinforcement Learning
for Offboard Control of a

Racing Drone

Semester Thesis

Robotics and Perception Group
University of Zurich

Supervision

Dr. Christian Pfeiffer
Angel Romero
Yunlong Song

Prof. Dr. Davide Scaramuzza

Apr 2022

Contents

Abstract iii

Nomenclature v

1 Introduction 1
1.1 Related Work . 2

1.1.1 Model-Based Approach 2
1.1.2 Learning-Based Approach 2

2 Method 3
2.1 Quadrotor Specifications . 3
2.2 Communication Interface . 3
2.3 Split-S Track . 5
2.4 CPC + MPC . 6
2.5 Deep RL . 6

3 Experiments 8
3.1 Experiment Setup . 8
3.2 CPC + MPC . 8
3.3 Deep RL . 10

4 Discussion 12
4.1 Advantages/Limitations . 12
4.2 Conclusion . 12
4.3 Future Work . 13

i

Abstract

Autonomous drone racing relies on algorithms running on computers to con-
trol the drones. Currently, on-board computers are used to run these algo-
rithms. However, off-board controlled drones can be lighter and reach much
higher speeds. Therefore, we integrated an off-the-shelf, low-latency RC-link
product to our flight stack to control a lightweight racing drone by an off-board
computer. Commands from our flight stack are transmitted from computer to
drone via this RC-link, as well as battery voltage telemetry from drone to com-
puter. We measured the latency in the system and confirmed that the off-board
system has a very similar latency to the on-board system. We then employed
two methods to push the off-board controlled drone to its physical limits. The
first method is to track a time-optimal reference trajectory that is computed
for this drone and the second method is to train a deep reinforcement learning
policy in simulation to deploy in real world. We flew the off-board controlled
drone in real word in a racing track using these two methods. We were able to
push the drone to 70% of its actual limit in terms of thrust-to-weight ratio with
the first method and its full limit with the second method. In both methods, by
using off-board control, we were able to reach lap times that were not possible
with the on-board controlled drone.

iii

Nomenclature

Acronyms and Abbreviations

CPC Complementary Progress Constraints

FC Flight Controller

GPS Global Positioning System

IMU Inertial Measurement Unit

MPC Model Predictive Control

RC Radio Controller

RF Radio Frequency

RL Reinforcement Learning

RPG Robotics and Perception Group

TWR Thrust-to-Weight Ratio

VIO Visual Inertial Odometry

v

Chapter 1

Introduction

The ultimate goal of autonomous drone racing is to push drones to their physi-
cal limits while successfully following race tracks. This is achieved by real-time
software stacks which estimate the state of the drone (position, rotation, ve-
locity etc.) with the help of on-board sensory information or external motion
capture systems and give the necessary command to move the drone to the de-
sired state. Currently, these algorithms run on on-board computers because it
is required to have reliable and low-latency communication between the high-
level computer, which gives yaw, pitch, roll and throttle commands and the
low-level flight controller (FC), which drives each motor based on these signals.
This is particularly important because as latency increases, it becomes harder
for the flight stack to control the drone and make necessary maneuvers to fol-
low the race track as fast as possible. However, on-board computers have the
disadvantage of adding extra weight as they are mounted on drones, and as a
result, decreasing the thrust-to-weight ratio (TWR), which is a measure directly
proportional to acceleration, hence the speed. On the other hand, enabling off-
board control for autonomous drones make it possible to have lighter drones
with higher TWRs that can reach higher speeds. Thus, in this project, we de-
velop a communication interface between a drone and an off-board computer
using an off-the-shelf radio controller (RC)-link product consisting of a trans-
mitter and a receiver which is used by professional drone racers. It provides
a reliable and low-latency communication which are essential qualities for the
agile control of a drone. Then, we test the communication interface by flying
the off-board controlled drone in a racing track to push the drone to its physical
limits with two approaches to see how much we can push with each. The first
approach is to generate a time optimal reference trajectory and to follow this
trajectory by model predictive control (MPC). The second approach is training
the drone in simulation by deep reinforcement learning (RL) to make it learn
a policy which can fly the drone in the race track it is trained for. In Chap-
ter 2, the methodology of the communication interface and the methods that
are used to fly the off-board controlled drone will be explained in detail and in
Chapter 3, the results of the experiments are presented. Finally in Chapter 4,
the advantages, limitations, and future directions of this work are discussed.

1

2 1.1. Related Work

1.1 Related Work

Autonomous drone racing is an extension of the more general problem of time-
optimal multi-waypoint flight where each gate in racing track is a waypoint and
the drone needs to pass all of them as fast as possible. The literature in time-
optimal multi-waypoint flight can be divided into model-based approach and
learning-based approach.

1.1.1 Model-Based Approach

State-of-the-art model-based works approach this problem in two steps: gener-
ating a time-optimal trajectory [3, 8] and following this trajectory by control
algorithms. MPC is an example control algorithm that can be employed to
track a pre-defined trajectory [1, 2]. In [3], complementary progress constraints
(CPC) is proposed, where a time-optimal trajectory is computed by solving an
optimization problem by discretizing the trajectory. The optimization problem
is constrained by quadrotor dynamics and waypoints. Then, this time-optimal
reference trajectory is tracked by MPC to achieve agile flights in real world in
the racing track.

1.1.2 Learning-Based Approach

Deep RL proves to be successful in robotics domain and it has been used to
control robots autonomously, such as robotic arms [5], legged robots [7], and
quadrotors [6]. In [11], deep RL is used to fly a quadrotor in a racing track
to achieve a performance close to platform limits. It is achieved by training
an agent in simulation and rewarding the progress between the waypoints (i.e
gates) such that the agent tries to finish the track as fast as possible. Then, the
trained policy is deployed in real world in a racing arena.

Chapter 2

Method

2.1 Quadrotor Specifications

The specifications of on-board and off-board controlled drones that are referred
in this work are given in Table 2.1. They can produce the same maximum
thrust and they have the same frame and hardware components. The only
difference is that the on-board drone (Figure 3.1) carries a computer on top
while the off-board drone (Figure 3.2) does not. Using off-board control allows
us to remove the on-board computer and results in a 50% increase in TWR and
smaller moment of inertia coefficients.

Drone Max Thrust (N) Mass (kg) TWR diag(J) (gm2)
on-board 34 0.752 4.6 [2.5, 2.1, 4.3]
off-board 34 0.500 6.9 [2.3, 1.7, 3.7]

Table 2.1: Specifications of the on-board and off-board controlled drones.

2.2 Communication Interface

The communication between the off-board computer and the drone is two-sided
and handled by a Team BlackSheep (TBS) Crossfire Micro TX v2 transmitter
and a TBS Crossfire Nano RX receiver 1. Normally, the transmitter is connected
to an RC as an external transmitter to send the commands from the pilot to
the receiver, which is connected to the drone’s FC. In our case, RC is replaced
by the computer and the pilot is replaced by our flight stack Agilicious [4].
Agilicious is a software framework that can handle autonomous and agile flight
tasks and it can be used by model-based and neural-network-based controllers.
The pipeline of our interface can be seen in Figure 2.1.

1https://www.team-blacksheep.com

3

4 2.2. Communication Interface

Figure 2.1: Communication pipeline.

TBS products use a proprietary serial communication protocol, called CRSF,
to handle the communication between its products. Thanks to the support we
get from our collaborator TBS, we are able to use CRSF protocol and construct
the frames for our purposes by packing the control commands generated by Ag-
ilicious (yaw, pitch, roll, throttle) in the required format. Similarly, we decode
the battery voltage telemetry coming from the FC, which is required for run-
ning our control algorithms. We can successfully transmit the commands from
Agilicious to FC and decode the battery voltage telemetry coming from FC to
Agilicious.

The off-board computer communicates with the transmitter by serial communi-
cation over a USB to serial converter. The transmitter sends the commands to
the receiver which has an update frequency of 150Hz. Average latency at this
step from the moment a command leaves the computer until it reaches the FC
is approximately 7.5ms. The receiver also communicates with the FC by serial
communication and finally, FC gives corresponding signals to motor controllers.
Downlink from the FC to the computer follows the same way in the opposite
direction.

It is essential to have a reliable link between the off-board computer and the
drone with a low latency. Therefore, we measure the latency in the pipeline
by using a load cell. We find the overall latency in the system by measuring
the elapsed time from the moment the command leaves the computer until the
moment it reaches the motors of the drone. We periodically send high and low
thrust from Agilicious, 1 second each, and log the time we send each command.
We also record the measurement in the load cell. Then, we fit exponentials to the
load cell data using motor parameters to find the delay until we observe high and
low thrust in motors for 125 high to low or low to high transitions. The result
of the current off-board system (Betaflight + TBS) is given in Table 2.2 and
illustrated in Figure 2.2 together with other communication setups used before
with the Agilicious. Betaflight + Laird is also an off-board communication
setup, while the other two are on-board communication setups. We reduce the
latency by 50% comparing to the other off-board setup, Betaflight + Laird, and
we have on average only 1ms more latency compared to the on-board setup with
Betaflight FC. Thus, we can use off-board communication without compromising
from the latency.

Chapter 2. Method 5

Method Min(ms) Q1(ms) Median(ms) Q3(ms) Max(ms)
Betaflight + TBS 22 33 39 44 51
Betaflight + Laird 67 68 76 81 87
Betaflight on-board 35 36 38 44 49
agiNuttx 31 33 36 37 38

Table 2.2: Latency comparison of our off-board setup with other setups used by
Agilicious. Our latency statistics are acquired from 125 latency measurements.
Statistics of other setups are acquired from [4]

Figure 2.2: Latency comparison.

2.3 Split-S Track

We test our off-board controlled platform in Split-S racing track (Figure 2.3).
It is a 3D race track and it consists of 7 gates, each having a passing area of
1.5x1.5m square. The track dimensions are roughly 14x14m and the height of
the highest gate center is 3.5m.

6 2.4. CPC + MPC

Figure 2.3: Race track with an example trajectory.

2.4 CPC + MPC

To test the communication pipeline, we compute reference trajectories using
CPC [3]. CPC aims to find a time-optimal trajectory given a set of waypoints
by solving an optimization problem constrained by quadrotor dynamics. The
center points of the gates in the race track (Figure2.3) are given as waypoints
to find a time optimal trajectory. The reference trajectory is then tracked by
using an MPC algorithm. We compute multiple reference trajectories, each with
a different TWR value to see how much we can push the drone to its physical
limits with CPC+MPC approach.

2.5 Deep RL

The off-board communication protocol is also tested by training a deep RL pol-
icy in simulation to fly the drone in real world inside a tracking arena. The
simulation environment is Flightmare [10], which includes the race track layout
(Figure2.3) we use for real world flights and provides a deep RL API. The pol-
icy is trained using the methodology of [11] for the off-board controlled drone
for multiple TWR values to achieve the fastest flight in the track possible with
the RL approach. The methodology of [11] can be described as follows. The
observation space of the RL problem consists of the drone’s state (velocity, ac-
celeration, orientation, body rates) and the current state at the track (next
gate’s position and orientation). The action space is rotor thrusts. The reward
function has two components: progress reward and safety reward. If the drone

Chapter 2. Method 7

moves closer to the next gate between two time steps, it receives a reward pro-
portional to the amount of progress towards the next gate. In order to encourage
the drone to pass closer to the gate center, a negative safety reward is given to
punish positions farther from the gate center while passing the gate. The agent
is trained using proximal policy optimization (PPO) [9] in a vectorized environ-
ment, which allows training multiple agents at the same time and accelerates
training.

Chapter 3

Experiments

3.1 Experiment Setup

The experiments reported in this section are conducted with the off-board con-
trolled drone (Figure 3.2) in the racing track in Figure 2.3. Simulated experi-
ments are conducted in the simulation environment of Agilicious and the real
world experiments are conducted inside a large-scale tracking arena using posi-
tion tracking by infrared cameras and infrared markers. The experiments that
had been done with the on-board controlled drone (Figure 3.1) in previous works
are also reported for comparison in this section. The specifications of the drones
are listed in Table 2.1.

Figure 3.1: On-board controlled
drone.

Figure 3.2: Off-board controlled
drone.

3.2 CPC + MPC

We compute CPC trajectories with multiple TWRs to see how much we can
push the limits with this method and we use MPC to follow these trajectories.
The reference trajectories computed with a TWR of 4.5 and 4.9 are successfully
followed in the racing track in the arena while the reference trajectory with a
TWR of 5.3 cannot be followed with this approach and results in a crash. The
lap times are given in Table 3.1 together with the success rates. The table shows
that we reach the limit at TWR of 4.9 on off-board controlled platform with
CPC + MPC approach.

8

Chapter 3. Experiments 9

TWR
Lap time (s)

Success rate (laps)
Reference Real world

4.5 5.1 5.1 3/3
4.9 4.8 4.8 3/3
5.3 4.7 - 0/3

Table 3.1: Lap times using CPC+MPC approach for three TWR values.

In Figure 3.3, the reference and the real world trajectories are plotted with gates
for TWR=4.9. It can be seen that the drone passes through the gates while
following the reference trajectory. If we further increase the TWR, the drone
cannot follow the reference anymore and it crashes or cannot pass through the
gates. An example failure case is given in Figure 3.4 where the drone fails to
follow the trajectory with a large margin.

Figure 3.3: Reference tra-
jectory (black) and trajectory
flown in real world (red) with
TWR=4.9.

Figure 3.4: Reference tra-
jectory (black) and trajectory
flown in real world (red) with
TWR=6.1.

With the on-board controlled drone, the highest TWR that could be flown by
this approach was 3.3 and the corresponding lap time was 6.12s [3]. We are able
to fly a TWR of 4.9, which is 48% more compared to the on-board controlled
drone and the drone is able to finish the track in 21% shorter duration using
off-board control compared to the on-board controlled drone. The on-board
controlled drone has a limit TWR of 4.6 (Table 2.1) and it could fly a maximum
TWR of 3.3, which is at the 70% of the drone’s limit. The off-board controlled
drone has a limit TWR of 6.9 (Table 2.1) and it can fly a maximum TWR of
4.9, which is also at the 70% of the drone’s limit. Thus, we can argue that CPC
+ MPC method can push the quadrotors up to 70% of their limits. By using
off-board control, we increase the limit of the quadrotor which also increases
the maximum performance we can get by using CPC + MPC.

10 3.3. Deep RL

3.3 Deep RL

We train RL policies with several TWRs to push the off-board controlled drone
to its limits. The lap times are reported in Table 3.2 for the simulation and
the real world experiments. The RL policy with a TWR of 6.9, which is the
actual limit of the drone, can pass all the gates in 4.22s. We also experiment
with a policy trained with a higher TWR than the actual limit to observe the
effects of deploying a policy trained for a TWR higher than actual value. It
leads to a worse performance and proves that the optimum lap time is acquired
at the actual TWR of the quadrotor. It can be interpreted that we get higher
performance when the simulation that we train the policy in overlaps more
with the real world. The table also suggests that the lap times are lower than
the simulation except the highest TWR which is larger than the actual limit.
This difference might be due to mismatches between the physics models in the
simulation and the real world, and the quadrotor parameters.

TWR
Minimum Lap Time (s)

Success rate (laps)
Simulation Real World

5.7 4.80 4.69 3/3
6.5 4.48 4.33 3/3
6.9 4.30 4.22 6/6
7.3 4.16 4.32 3/3

Table 3.2: Lap times in simulation and real world experiments with multiple
TWRs using RL policies.

In Table 3.3, the gate passing errors are reported for TWR=6.9 in simulation
and real world, which is the Euclidean distance between the center of the gate
and the point where the drone passes the gate. It is observed that the mean
gate passing error in real world is similar to the one in the simulation.

Gate Passing Error (cm)
Simulation Real World

Min Max Mean Min Max Mean
13 33 23 4.2 56 27

Table 3.3: Gate passing errors in simulation and real world experiment for
TWR=6.9, from 21 gate passings.

In Table 3.4, the velocity and acceleration statistics are reported for TWR=6.9
from 3 laps. We can reach about 100 km/h with the offboard-controlled setup.

Chapter 3. Experiments 11

Linear Velocity (km/h) Linear Acceleration (m/s2)
Simulation Real World Simulation Real World
Mean Max Mean Max Mean Max Mean Max
62.3 90.4 65.9 98.3 57.0 76.3 55.2 70.6

Table 3.4: Linear velocity and acceleration statistics in simulation and in real
world experiments for TWR=6.9 from 3 laps.

The trajectories flown in the simulation and in the real world are given in Figure
3.5 with the gates. It can be seen that the drone can successfully pass through
the gates even though it deviates from the trajectory flown in simulation. This
shows that learning a policy makes the drone robust against deviations from
the simulation while flying in real world.

Figure 3.5: Simulation trajectory (black) and trajectory flown in real world
(red) with TWR=6.9.

With the on-board controlled drone, the maximum TWR that could be flown
with this approach was 4.6 and the fastest lap time was 5.35s. By using the
off-board controlled drone, we can fly with a maximum TWR of 6.9 and achieve
a 21% less lap time. The limit of on-board controlled drone is a TWR of 4.6 and
the limit of the off-board controlled drone is a TWR of 6.9 2.1. This approach
could fly both drones in their maximum limit. By increasing the physical limit
of the drone with off-board control, we managed to achieve much faster lap
times.

Chapter 4

Discussion

4.1 Advantages/Limitations

Our approach has several advantages over on-board control of drones for au-
tonomous racing. The immediate advantage is reducing the weight on the drone
due to the on-board computer, thus having a faster drone with higher TWR.
Moreover, more computational power is available on off-board computers com-
pared to on-board computers. However, off-board communication is no longer
feasible in some applications outside of drone racing, such as when the drone
needs to function in remote places where it is outside the range of the transmit-
ter or the radio signal is blocked by some RF noise or obstacle.

4.2 Conclusion

In this work, we proposed a low-latency communication interface for off-board
control of racing drones and showed that it is as good as on-board communi-
cation in terms of latency. Furthermore, we displayed its merit by flying in a
challenging race track with two approaches, CPC + MPC and deep RL, and
reaching speeds which were not possible with the on-board controlled drone.

Our work also shows that we can fly quadrotors in their full capacity by using
deep RL approach [11] while we can fly only up to 70% of the actual limit by
following a CPC reference trajectory by MPC [3]. It is mostly due to the innate
differences between these two approaches. RL policy is trained in simulation
where the drone experiences many states in the racing track and learns what to
do in these states. Therefore, the policy is successful at controlling the drone
despite the deviations from the simulation environment. However, the approach
of following a time optimal CPC trajectory by MPC tries to follow a reference
trajectory and it cannot adapt its behavior well to the deviations from the
reference along the way. Therefore, it becomes harder to track the reference as
the reference speed increases and it becomes impossible after some limit.

12

Chapter 4. Discussion 13

4.3 Future Work

An interesting direction for this work would be to employ more telemetry data
such as IMU, camera images, and GPS. The RC-link allows a large bandwidth to
be communicated and these different modalities could increase the performance
of state estimation and make it possible to use visual-inertial odometry (VIO)
with off-board control. Another future direction would be building autonomous
micro drones. Since the drones do not need to carry on-board computers, they
can be built much smaller. There are some scenarios where autonomous micro
drones can be useful such as search and rescue operations. Finally, the proposed
off-board communication could be used to control a flock of drones from a single
computer, which is more convenient than placing a computer on each drone in
the flock.

14 4.3. Future Work

Bibliography

[1] Moses Bangura and Robert Mahony. Real-time model predictive control
for quadrotors. IFAC Proceedings Volumes, 47(3):11773–11780, 2014.

[2] M. Diehl, H.G. Bock, H. Diedam, and P.-B. Wieber. Fast direct multiple
shooting algorithms for optimal robot control. In Lecture Notes in Control
and Information Sciences, pages 65–93. Springer Berlin Heidelberg.

[3] Philipp Foehn, Angel Romero, and Davide Scaramuzza. Time-optimal plan-
ning for quadrotor waypoint flight. Science Robotics, 6(56), 2021.

[4] Philipp Foehn, Angel Romero, Davide Scaramuzza, Robert Penicka, Sihao
Sun, Leonard Bauersfeld, Thomas Laengle, Giovanni Cioffi, Yunlong Song,
Antonio Loquercio, and Davide Scaramuzza. Agilicious: Open-source and
open-hardware agile quadrotor for vision-based flight. Science Robotics,
2022.

[5] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep re-
inforcement learning for robotic manipulation with asynchronous off-policy
updates. In 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, May 2017.

[6] Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of
a quadrotor with reinforcement learning. IEEE Robotics and Automation
Letters, 2(4):2096–2103, October 2017.

[7] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
Marco Hutter. Learning quadrupedal locomotion over challenging terrain.
Science Robotics, 5(47), October 2020.

[8] Gilhyun Ryou, Ezra Tal, and Sertac Karaman. Multi-fidelity black-box op-
timization for time-optimal quadrotor maneuvers. The International Jour-
nal of Robotics Research, 40(12-14):1352–1369, 2021.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[10] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide
Scaramuzza. Flightmare: A flexible quadrotor simulator, 2020.

[11] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza.
Autonomous drone racing with deep reinforcement learning. CoRR,
abs/2103.08624, 2021.

15

Title of work:

Reinforcement Learning for Offboard Control of a

Racing Drone

Thesis type and date:

Semester Thesis, Apr 2022

Supervision:

Dr. Christian Pfeiffer
Angel Romero
Yunlong Song
Prof. Dr. Davide Scaramuzza

Student:

Name: Cafer Mertcan Akcay
E-mail: cakcay@student.ethz.ch
Legi-Nr.: 21-946-603

Statement regarding plagiarism:

By signing this statement, I affirm that I have read the information notice
on plagiarism, independently produced this paper, and adhered to the general
practice of source citation in this subject-area.

Information notice on plagiarism:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

Zurich, 26. 4. 2022:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

	Abstract
	Nomenclature
	Introduction
	Related Work
	Model-Based Approach
	Learning-Based Approach

	Method
	Quadrotor Specifications
	Communication Interface
	Split-S Track
	CPC + MPC
	Deep RL

	Experiments
	Experiment Setup
	CPC + MPC
	Deep RL

	Discussion
	Advantages/Limitations
	Conclusion
	Future Work

